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When the surface temperature of a liquid is a harmonic function
of time with a frequency w, a temperature wave propagates into the
liquid. The amplitude of this wave decreases exponentially with
distance from the surface. The temperature oscillation is essentially
concentrated in a layer of the order of (2y /)", where ¥ is the
thermal conductivity of the liquid (thermal boundary layer). Depend-
ing on the phase, at certain positions below the surface the tempera-
ture gradient is directed downwards and if its magnitude is sufficiently
large (the magnitude is a function of the amplitude and frequency
of the surface oscillations) the liquid can become unstable with
respect to the onset of convection. In that case the convective mo-
tion may spread beyond the initial unstable layer, For low frequencies
the stability condition can be derived from the usual static Rayleigh
criterion, on the basis of the Rayleigh number and the average tem-
perature gradient of the unstable layer, This quasi-static approach,
used by Sal'nikov [1], is appropriate to those cases in which the
period of the temperature oscillations is much larger than the char-
acteristic time of the perturbations. But when these times are of the
same order, the problem must be analyzed in dynamic terms, The
stability problem must then be formulated as a problem of parametric-
resonance excitation of velocity oscillations due to the action of a
variable parameter—the temperature gradient,

In an earlier work [2] we considered the problem of the stability
of a horizontal layer of liquid with a periodically varying temperature
gradient, It was assumed that the thickness of the layer was much
smaller than the penetration depth of the thermal wave, so that the
temperature gradient could be assumed to be independent of position.
In the present work we consider the opposite case, in which the
liquid layer is assumed to be much larger than the penetration depth,
i.e., athermal boundary layer can be defined, The temperature
gradient at equilibrium, which is a parameter in the equations deter-
mining the onset of perturbations, is here a periodic function of time
and a relatively complicated function of the depth coordinate z, The
periodic oscillations are solved by the Fourier method; the equations
for the amplitudes are solved by the approximate method of Karman-
Pohlhausen,

1. The equations of natural convection are, in the
usual notation, [3]

av 1
—a—t—]—(vV)v-:-EVp—kvAv——gBT,

.%§+VVT=)(AT, divv=0. (1.1)

We choose our coordinates so that the (x, y) plane
coincides with the liquid surface. The z axis is dir-
ected downwards. The temperature of the surface
z = 0 is uniform over the surface and varies with time
as a harmonic function

Ty = © cos ot.

At equilibrium (v = 0) the temperature inside the
liquid is determined from the equation

aTe . 8T

K T (1.3)
This has the solution
Ty =8¢ cos (0t —nz), % = (w/2y), (1.4)

(1.2)

which satisfies (1.2) and vanishes at z — « (we choose
the temperature of the liquid at a large depth below
the surface as the temperature datum). The quantity

6 = 1/% may be regarded as a measure of the depth of
penetration of the thermal wave, The equilibrium
pressure py is determined by the equation

VDo = — pBTg. (1.5)

To investigate the stability of the unsteady equilib-
rium (T, pp) we consider small convective perturba-
tions (T', p', v). Substituting the perturbed temperature
and pressure Ty + T', py + p' and the velocity v into
the system (1.1) and retaining the linear terms, we
obtain a system of equations for the perturbations
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divv=0. (1.6)
We can eliminate the variables p', vy, vy by apply-

ing to the first equation in (1.6) the operator curl curl

and projecting the result on the z axis. Further, we

assume that the perturbations are periodic in the

(x,y) plane, i.e. all variables are proportional to

exp i(kix + kyy). The vertical velocity component

vy, = Vv and the temperature perturbation T' (in the

following we shall drop the prime) are determined by

the equations

aTo
U
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<k2=k12+k22, A:—m—l&). (1.7)
We rewrite (1.7) in dimensionless form, choosing

the units of length, time, speed, and temperature to

be 1 /%, 1/ %2 vy, ©, gbk?® / vxt. This yields
1 48 v oSS 9 s
(——--—-A)Av:T, (]/PW-A>T:——ka(z, tyv

(k= (e + kD, P=vjy, R=gBOvxx3).  (1.8)

Here k is a dimensionless wave-number, P is the
Prandtl number, R is the Rayleigh number based on
the temperature amplitude at the surface ® and the
penetration depth 1/, and f(z,t) is the dimensionless
temperature gradient at equilibrium,

2t

§>—cos(VP_ —z)], (1.9)

(here t and z are dimensionless).

The perturbations v and T must decay exponentially
for z =", As regards the boundary conditions at the
upper surface, we shall consider two cases:

a) Plane free surface. The normal component of

fz,t)=e= [sin (% —
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velocity, the tangential stresses, and the temperature
perturbation vanish, i.e.

%
022

v= =T=0 at:=o0. (1.10)
b) Solid boundary. All velocity components and the

temperature perturbation vanish, i.e.,
=2 10

F i at z=0. (1.11)
2. We shall consider the free-surface case first.
Eliminating the temperature perturbation T from the

system (1.8), we obtain an equation for v

8 - a 1 72
<B_ZMVPA)<?—%_——1/—§ A)Av = —kRj(z, t)v. (2.1)
Taking into account (1.10) and (1.8), we replace the
boundary condition T = 0 at z = 0 by the condition

o —0

Ern a.t z=0.

(2.2)

To find the stability criterion, we must find a
relation between the parameters R, P, k for which
there exists a solution of (2.1) which is periodic in
time. As is well known, the main region of para-
metric resonance corresponds to motion with a
frequency equal to one half of the excitation frequency.
Therefore we may seek a "half-integer" periodic
solution of (2.1) in the form

v = vy (z) cos V% -+ v (2) sin th_’
using the Fourier method. Here v(z) and v4(x) are the
amplitudes of the basic harmonic with the frequency
1/¥'P. The upper harmonics, which we have not writ-
ten out here, have the frequencies 3/YP, 5/VP;....
Substituting (2.3) into (2.1) and retaining only the basic
harmonic, we obtain a system of ordinary homogen-
eous differential equations for the Fourier-amplitudes
vi(z) and vy(z):

e (23)

PA3y — (1 4 P) A*vy — Avy = K*PR (9, v; — ©_ vy),
PA%, + (1 +P) A%»y — Avy, = KPR (¢_v, + ¢, v),

(P =Yae? (cosz sinz), A=d¥ds?—k?). (2.4)

The amplitudes v; and v, satisfy the homogeneous
boundary conditions

"

T
V9= V1,3 = Ul.zv =0 at z=0,

vs—>0  at 2500,

(2.5)

To find an approximate solution of the boundary-
value problem (2.4), (2.5) we can use the Karman-
Pohlhausen method, used in boundary-layer theory
[4]. According to this method, the solution is approx-
imated by an assumed expression which takes account
of the boundary conditions, and the parameters in that
expression are then determined from integral rela-
tions. In our case the boundary conditions for v; and
vy are identical, so that in the first approximation,
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involving the minimum number of parameters, we
may assume

v (2) = eiF (2), v (2) = ¢,F (2) (2.6)
with a common function
F(2) = (3z - 3az® - a?%) e {2.7)

which satisfies (2.5). Here a is a parameter which
characterizes the depth of penetration of the perturba-
tions.
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Substitutihg (2.6) into (2.4) and integrating with
respect to z from 0 to «, we obtain a system of
homogeneous algebraic equations for c; and cy. The
compatibility condition of this system yields a rela-
tion between the parameters ‘

g (h— PP+ (14 PRI

R TP ,

a? (5a - 4)* —l—74’ (22 —}:1)27>

where (k2= =51

I, —a® L5k I, — a* + 2k%? 4 5kt

I, =5¢5 4 3Kk%* 4 3k*a® 4 5k°. (2.8)
An analogous relation can be derived for the case
of a solid boundary. In that case it is more convenient
to use (1.8). The Fourier expansion of the "half-
integer" periodic solution of (1.8) begins with the

harmonics

v:vl(z)cos#—{—vz(z)sinl/—tﬁ R

T =T.(2) COST/% + T9(z)sin T/%+- -
Substituting (2.9) into (1.8) and neglecting the higher
harmonics, we obtain a system of homogeneous
ordinary differential equations for the amplitudes v,
vy, Ty, and T4, For the sake of brevity we do not
write it out. The approximations for the amplitudes
are now

(2.9)

v = ClF (Z), Uy = C2F (Z),
Tl :dlq) (Z)’ T2 :dZ(D (Z) (3“10)
where
F () = 2%, D(5) =(z +azd) ez (2.11)

This choice of F(z) and &(z) satisfies the boundary
conditions

Vg =1y =0, T1p=0 at:=0

1,2, T1,2 -0 at z — o (2.12)
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as well as the additional condition

Tig =0 atz=0 (2.13)
which follows from (1.8).
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Integrating the amplitude equations over z from 0
to « and taking account of (2.10), the compatibility
condition of the system for cy, c;, dy, and d yields
a relation analogous to (2.8):

Re = 2UCED I o p g 4 31,P 4 Ly

I, =3a% 4k, I, =a® 13K (2.14)

3. The relations (2.8) and (2.14) contain the still
undetermined parameter a. Unlike the wave-number
k, this parameter cannot be specified independently
but is determined by the other parameters of the
problem. To determine this parameter we can use
any other integral relation, e.g., the momentum
equation. In principle, such an approach would yield
the parameter @ and then one could use (2.8) and (2.14)
to determine the relation between R and k at the stab-
ility limit ("neutral" curve) for the two cases con-
sidered. This, however, leads to very cumbersome
relations, not easily amenable to analysis. Therefore
we had to restrict our analysis to the determination
of the lower bound of the region of instability.

One can see from (2.8) and (2.14) that for fixed P
and k the function R(a) has a minimum at some point
ag. This value ay cannot, however, be regarded as a
true characteristic measure of the penetration depth.
But the corresponding minimum value R; is a lower
bound of the region of instability for fixed P and k,
i.e. essentially a lower bound for the amplitude €
necessary for the onset of convection for the given '
values of frequency and wavelength.
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Figure 1 shows the dependence of R, on k for various values of
the Prandt]l number. The solid curves correspond to the case of a free
surface; the dashed line corresponds to a solid boundary. The mini-
mum of the Ry(k) curve determines the critical perturbation wave-
number ky and the critical values Ry, for a solid boundary are higher
than the corresponding values for a free surface. For k > 1 the stability
curves for all Prandt] numbers coincide. Moreover, for large k the
values R are independent of the boundary conditions.

When the Prandt] number increases, the critical Rayleigh number
decreases and the minimum moves in the direction of long-wave per-
turbations (Figs. 2 and 3; 1 and 2 correspond to 2 free surface and a
solid boundary, respectively).

7
077 .
as \\1\
\\]
g 3 I
Fig. 3

For water at 20° C (P = 7), for instance, the critical R yleigh
number for a free surface is Ry, = 20. Hence the condition for the
onset of convection

AT
0> (2x> :
For a period of 1 min the critical amplitude is © > 0.4°C.
The authors are grateful to L. G. Loitsyanskii for
helpful criticism.
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